允中 发自 凹非寺量子位|公众号 QbitAIAI Agent热度不低,但是企业真的在使用智能体了吗?为了更加了解AI Agent落地现状,量子位·视点邀请到了汇智智能联合创始人樊刚正,一同来交流AI Agent正在以什么样的方式与具体场景相融合。樊刚正与我们分享了Agent公司来自实践一线的观察与思考。从本地生活+AI,到AI教育,再到分别面向C端和B端的智能体平台,汇智智能围绕Agent的落地做了不少的尝试探索。那么AI Agent的价值点在哪里?最适合AI Agent落地的场景是什么?一线用户对智能体需求的真实反馈是什么?以下在不改变原意的基础上,根据分享内容整理成稿。技术的引入需要解决实际问题,而非增加复杂度。先考虑做单点突破,再去考虑做泛化通用。不是去造飞机大炮,而是要在AI商业化中造子弹。企业内部能最先能用好的Agent,比如像在钉钉、飞书这种企业协作工具里。今天在分享中,我更倾向于向大家去呈现:我们在Agent落地方面经历了什么样的探索,然后在落地探索中,我们吸取了哪些经验。我觉得这个实际业务当中的一些经验,可能对于大家来讲更有启发,也更有价值。汇智智能最早是做本地生活,还有游戏相关的业务。所以最初我们转向做AIGC的时候,也尝试过和我们过去的业务做一些结合。我觉得任何从传统业务,或者从互联网行业转型做AI的公司可能都会经历过这样的步骤,先去考虑AI和我原有业务怎么去做结合,然后再想如何仅基于AIGC去做产品。这也就是从应用+AI到AI原生的这么一个路径。技术的引入需要解决实际问题,而非增加复杂度最早汇智智能做的小程序是面向本地生活商家,主要是为用户提供运营管理的工具,通过抖音MCN,以派单的方式给达人一些线上任务。加入AI大模型后,我们先后推出了旺氪小程序和智能体AI小程序。除了接单派单的功能,还加了内容生成的工具化服务。比如说用户可以在小程序里生成门店图片,或景区风景合影照片。当时上线了非常多的插件类工具,我们在内部把这个叫做智应用。但在这个过程当中,我们发现:即使有一些流程指引,商家反馈的使用效果也不是很好。加了AI的功能之后,部分视频是AI生成的,部分文案是AI生成的,但对商家来讲,他们觉得步骤变多了,但我拿到的东西还是和过去一样。在一开始转型做AI业务的时候往往会发生这样的问题,想当然地认为可以用AI去改造现有的生产环节,或者认为这能够替代一切原有的内容生产。但实际使用时会发现,ROI并没有想象的高。在应用AI时我们需要谨慎,特别是在没有颠覆性创新之前,技术的引入必须真正解决实际问题,而不是增加复杂度。另外我也给大家一个建议,就是先考虑做单点突破,再去考虑做泛化通用。过于泛的场景应用容易导致各个场景只能拿到60分,但对用户来说,如果你只能在一个场景中解决60%的问题,其实解决0%的问题没有区别。AI教育与人才培养的尝试在上面的尝试中我们也发现:AI的转型落地依赖于相关人才来完成最后100米的落地部署。这种人才在国内来讲是比较少的,真正能称得上是大模型工程师的人其实不多,这也导致项目落地时,没办法提供很高的交付能力。所以我们希望为市场培育更多人才,这对整个行业都是有价值的。于是我们想把过去内部业务培训的内容,拿出来做成对外的课程。但它也没有太强的生命力。因为在没有积累丰富的AI落地案例的时候,课程更多偏大模型本身的技术学习。所以面向的学员群体非常窄,推广难度大,没有能够吸引很多人来加入这个行业。另外,教育内容的研发和推广周期长,导致课程上线时已落后于市场需求。我们的经验是,AI教育应从业务中自然生长,当有足够多的经验案例时再推向市场。同时,教育对象应是可以转化为业务伙伴的用户,而不是C端用户。对于业务平台来说,直接参与知识付费业务没有那么合适,应该谨慎对待。Gnomic与Agent云:C端与B端的融合在几次业务尝试之后,我们重新思考了汇智智能在大模型生态中的定位——我们将自己定位在应用框架层,合作伙伴属于垂直应用层。目前汇智智能的业务架构是B端和C端融合的结构。我们目前主要的两个智能体平台:Gnomic平台面向C端创作者,提供定制化的智能体创意、分享与推广服务。Agent云则为B端企业提供AI数字员工解决方案和云服务,帮助企业优化成本、提升效率,提供决策支持。截至今年5月底,Gnomic平台拥有超过500万用户,原创智能体数量达7万多个。像AI小王子、南瓜博士,还有数字生命卡兹克,都是我们最早一批内测用户。Gnomic平台面向的用户群体很广泛,我们可以通过这些智能体去观察,有哪些场景适合我们做深入的业务探索。比如目前有3万+休闲娱乐相关的智能体,例如角色扮演等,还有2万+与工作学习相关,2万+与金融和商业相关。我们所有的智能体支持转发或部署到微信公众号、抖音号中,让我们平台的能力变成创作者在个人平台里的能力。我们也会帮创作者做一些推广,分享创作者作品让更多人看见。希望能够做到「与AI热爱者同进,与AI创造者共赢」。Agent云平台的定义是企业级的AI数字员工解决方案与云服务平台。区别于过去的数字员工,Agent云定义的AI数字员工更突出与大模型结合带来的新价值。具体有五大用户价值点:永生数字员工:每个智能体都会保留长期的工作协作记忆一分钟购买即用:从购买到部署到空间,可以在一分钟之内完成企业知识管理:帮助企业搭建自己的行业专家级知识库智能体工作流:多个智能体在复杂工作流程中实现人机协作自研AI技术栈:可以持续为用户提供有升级演进能力的技术服务自研技术栈增强对技术的掌控力汇智智能拥有自研大模型CarrotAI,预计今年下半年可通过备案,向公众提供大模型服务。有很多合作方和生态合作伙伴问我们,为什么作为平台层公司,还要做自己的大模型?因为我们觉得,如果只是做平台层,往往会陷入身不由己的境地。最近大模型在大降价,相比直接我们的接入成本降了很多。但是对我们而言,成本可控比成本低更重要。而且,当我们熟悉从数据标注到预训练的大模型开发全过程,再到最后微调、部署,我们自身也会有更强的技术掌控力。面对客户的需求时,我们都可以通过自己的技术栈做快速的切入来提供服务。我们希望通过Agent云平台,能够让智能体成为企业组织的新基建。面对更多的场景,仅靠汇智智能来承载是不够的。这里为大家呈现的是,汇智智能生态合作伙伴的运营体系——城市运营中心。最终我们希望通过汇智智能的大模型创新能力,为合作的城市运营中心提供技术上的赋能。让身处于行业中的生态合作伙伴,去交付具体客户。比如像金融行业的客户需要智能体业务,我们自己去了解行业再做成定制化产品,就会花费比较长的调研、开发时间,而对于金融行业的合作伙伴而言,就容易得多。我们将底层技术提供给金融行业的合作伙伴,由他们完成实际交付。相当于把汇智的能力复制出去了。我们这段时间也正在招募城市运营中心的合作伙伴,非常欢迎大家联系我们交流合作。以上就是我们目前在AIGC商业化探索中的一点经验。企业协作有可能最先用好AI AgentQ:在目前汇智智能的观察中,在哪些场景或什么样的工作,是Agent能够完成得更好更优质的呢?为什么企业可以用Agent来代替原有的工作流?汇智智能樊刚正:在Agent云中上线的智能体,大多数都是用于企业内部协作的场景。我们觉得在企业内部能最先能用好的Agent,比如像在钉钉、飞书这种企业协作工具里,在内部平台去加上智能体业务。Q:目前汇智智能有哪些具体落地的案例,可以与大家分享?汇智智能樊刚正:其实还挺多的。比如我们之前与江苏的一个国企合作,提供企业内部的协作服务。他们作为一家大企业,旗下有400多个子公司,内部协作时有许多各部门共享的文档,和需要同步的会议信息。我们为他们定制了内部使用的智能体平台。在平台里,可以创建不同部门的智能体空间,每个空间的智能体都对应了具体的员工,员工平时可以把日报和周报发给智能体。时间一长,对应的智能体会非常了解这个人在做什么,平时在解决什么问题。如此可以实现以下两种场景。一个是记忆的传承,当原来员工离职后,新员工可以继承他的智能体,遇到问题就可以向原来员工的智能体询问。还有一个是记忆的共享,用户可以调用不同身份的智能体。当该身份员工不在时,可以向他的智能体寻求建议。智能体就像是一个员工的数字分身。当智能体平台与监控摄像头相结合,还可以做到预测功能。比如过去火情监测是靠烟雾、火苗的识别来做预警,那么通过监测环境中的易燃物,可以提前预测火灾的可能性,同样也可以预测火情的原因和适合什么设备来灭火。类似的监测还可以用于校园霸凌的场景,比如发现多个学生围着某个孩子时,就可能存在校园暴力的场景。Q:那就您的观察,目前智能体的用户比较关注的Agent的功能是什么样的呢?汇智智能樊刚正:不同行业有不同关注的价值点。主要集中在三个方面,一个是快捷、一个是可塑,一个是性价比。比如我们和一个咨询公司的合作。对方主要是为企业提供数字化转型咨询服务的。当用户问他们有没有AI平台可以使用时,他们就只能推荐使用智谱,或者月之暗面这些平台。那么,现在我们提供了定制化智能体平台OEM服务,他们可以直接对客户企业说:可以直接使用我们的平台上的智能体产品。对于这样的用户,他们关注的就是平台的快捷、可塑。有的公司需要单独做具备智能体功能的小程序开发,我们就提供了比较有竞争力的服务价格。对于生态合作伙伴,在开发费用、算力费用上都有不同程度的优惠政策。相比企业自己去搭技术栈做这样一个平台,我们可以节约95%以上的成本。Q:那么像现在大模型迭代也非常快,那么智能体产品是否需要始终适配最新的大模型呢?汇智智能樊刚正:不是这样。以C端的视角来举例:假设我是一个提示词创作者,过去在ChatGPT上面创作了很多有意思的提示词,但当把这些提示词搬到智谱,或者月之暗面的模型上面时,发现效果和GPT回答的并不一致,因为他们本身的能力是不一样的。那在企业端也是这样的问题。比如已经把智能体配置得很好,基于某种模型做了测试,调试后达到了一定的效果。如果有什么最好的模型马上做更换的话,那相当于提供的服务其实是不稳定的。可能换了参数量、能力更强的模型,但不意味着一定能做更好的服务。我们更倾向于在这个场景下,当模型已经能实现用户要求的时候,一般就不会做更换。这也是去年行业里一个普遍的误区,就是模型越大越好、模型一定要参数量越高越好。其实不是这样的。小模型,相对来讲更可控,而且成本更低,我们去做运营的调试成本也会更低。对于用户来讲,也能够做更多定制化的东西。Q:还有伙伴比较关心,如果用Agent来作为数字员工的话,涉及到任务的解答或者知识的继承,对于准确性还是有一定要求的,汇智智能如何看待智能体的数据准确性呢?汇智智能樊刚正:数据准确这方面,其实有很多策略可以来解决。大家知道大模型有幻觉问题。比如大家关注的AI搜索:以前用大模型回答问题时,很难避免不出现幻觉。而AI搜索的逻辑是:用户输入问题后,后台调用搜索的插件,比如Bing的插件去看搜索出来的结果,然后根据这些结果的文本内容进行总结,再回答你。我们也可以在知识库的层面去避免这种问题。如果你发现想提供给用户的服务,在知识库里没有,互联网上也找不到,那我们可以帮企业做信息上传,进行知识库的处理。我们还可以在提示词里做避免幻觉的提示词策略,比如要求AI回答的任何问题,都必须通过知识库或互联网连线去检索回答,并提供依据。另外。技术本身是有自己演进过程的。我们现在也很难信任智能体来完成一些具体的金融行为,比如让智能体帮我付钱。比如订单点菜的智能体,万一产生了幻觉,付款付多或者付少了怎么办?所以我们需要有长远的技术视角。现在在某些场景下,智能体已经可以比较准确地解决问题,但是在某些要求特别精准的环境里,我们可能要期待未来的技术来解决这些问题。关于365行AI落地方案AI技术的落地应用不仅限于科技领域,它已经渗透到各行各业,成为推动产业升级的重要力量。因此,“365行AI落地方案”主题策划应运而生,我们寻找各行各业中成功应用AI技术的案例和方案,分享给更多的产业内人士。—完—